Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 47: 109003, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36915639

RESUMEN

The metagenomic data presented in this article are related to the published research of "A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children" This database contains 16S ribosomal RNA (rRNA) metagenomics of sandbox sand and skin and gut microbiota of children in the intervention and placebo daycares. In intervention daycares, children aged 3-5 years were exposed to playground sand enriched with microbially diverse soil. In placebo daycares, children were exposed to visually similar as in intervention daycares, but microbially poor sand colored with peat. Sand, skin and gut metagenomics were analyzed at baseline and after 14 and 28 days of intervention by high throughput sequencing of bacterial 16S rRNA gene on the Illumina MiSeq platform. This dataset shows how skin bacterial community composition, including classes Gammaproteobacteria and Bacilli, changed, and how the relative abundance of over 30 bacterial genera shifted on the skin of children in the intervention treatment, while no shifts occurred in the placebo group.

2.
Ecotoxicol Environ Saf ; 242: 113900, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35930838

RESUMEN

BACKGROUND: According to the biodiversity hypothesis of immune-mediated diseases, lack of microbiological diversity in the everyday living environment is a core reason for dysregulation of immune tolerance and - eventually - the epidemic of immune-mediated diseases in western urban populations. Despite years of intense research, the hypothesis was never tested in a double-blinded and placebo-controlled intervention trial. OBJECTIVE: We aimed to perform the first placebo-controlled double-blinded test that investigates the effect of biodiversity on immune tolerance. METHODS: In the intervention group, children aged 3-5 years were exposed to playground sand enriched with microbially diverse soil, or in the placebo group, visually similar, but microbially poor sand colored with peat (13 participants per treatment group). Children played twice a day for 20 min in the sandbox for 14 days. Sand, skin and gut bacterial, and blood samples were taken at baseline and after 14 days. Bacterial changes were followed for 28 days. Sand, skin and gut metagenome was determined by high throughput sequencing of bacterial 16 S rRNA gene. Cytokines were measured from plasma and the frequency of blood regulatory T cells was defined as a percentage of total CD3 +CD4 + T cells. RESULTS: Bacterial richness (P < 0.001) and diversity (P < 0.05) were higher in the intervention than placebo sand. Skin bacterial community, including Gammaproteobacteria, shifted only in the intervention treatment to resemble the bacterial community in the enriched sand (P < 0.01). Mean change in plasma interleukin-10 (IL-10) concentration and IL-10 to IL-17A ratio supported immunoregulation in the intervention treatment compared to the placebo treatment (P = 0.02). IL-10 levels (P = 0.001) and IL-10 to IL-17A ratio (P = 0.02) were associated with Gammaproteobacterial community on the skin. The change in Treg frequencies was associated with the relative abundance of skin Thermoactinomycetaceae 1 (P = 0.002) and unclassified Alphaproteobacteria (P < 0.001). After 28 days, skin bacterial community still differed in the intervention treatment compared to baseline (P < 0.02). CONCLUSIONS: This is the first double-blinded placebo-controlled study to show that daily exposure to microbial biodiversity is associated with immune modulation in humans. The findings support the biodiversity hypothesis of immune-mediated diseases. We conclude that environmental microbiota may contribute to child health, and that adding microbiological diversity to everyday living environment may support immunoregulation.


Asunto(s)
Interleucina-10 , Interleucina-17 , Bacterias/genética , Biodiversidad , Preescolar , Citocinas , Método Doble Ciego , Humanos , Arena , Linfocitos T Reguladores
3.
Environ Int ; 157: 106811, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34403882

RESUMEN

BACKGROUND: In modern urban environments children have a high incidence of inflammatory disorders, including allergies, asthma, and type1 diabetes. The underlying cause of these disorders, according to the biodiversity hypothesis, is an imbalance in immune regulation caused by a weak interaction with environmental microbes. In this 2-year study, we analyzed bacterial community shifts in the soil surface in day-care centers and commensal bacteria inhabiting the mouth, skin, and gut of children. We compared two different day-care environments: standard urban day-care centers and intervention day-care centers. Yards in the latter were amended with biodiverse forest floor vegetation and sod at the beginning of the study. RESULTS: Intervention caused a long-standing increase in the relative abundance of nonpathogenic environmental mycobacteria in the surface soils. Treatment-specific shifts became evident in the community composition of Gammaproteobacteria, Negativicutes, and Bacilli, which jointly accounted for almost 40 and 50% of the taxa on the intervention day-care children's skin and in saliva, respectively. In the year-one skin swabs, richness of Alpha-, Beta-, and Gammaproteobacteria was higher, and the relative abundance of potentially pathogenic bacteria, including Haemophilus parainfluenzae, Streptococcus sp., and Veillonella sp., was lower among children in intervention day-care centers compared with children in standard day-care centers. In the gut, the relative abundance of Clostridium sensu stricto decreased, particularly among the intervention children. CONCLUSIONS: This study shows that a 2-year biodiversity intervention shapes human commensal microbiota, including taxa that have been associated with immune regulation. Results indicate that intervention enriched commensal microbiota and suppressed the potentially pathogenic bacteria on the skin. We recommend future studies that expand intervention strategies to immune response and eventually the incidence of immune-mediated diseases.


Asunto(s)
Microbiota , Bacterias , Biodiversidad , Niño , Guarderías Infantiles , Humanos , Suelo
4.
Artículo en Inglés | MEDLINE | ID: mdl-33918486

RESUMEN

According to the hygiene and biodiversity hypotheses, increased hygiene levels and reduced contact with biodiversity can partially explain the high prevalence of immune-mediated diseases in developed countries. A disturbed commensal microbiota, especially in the gut, has been linked to multiple immune-mediated diseases. Previous studies imply that gut microbiota composition is associated with the everyday living environment and can be modified by increasing direct physical exposure to biodiverse materials. In this pilot study, the effects of rural-second-home tourism were investigated on the gut microbiota for the first time. Rural-second-home tourism, a popular form of outdoor recreation in Northern Europe, North America, and Russia, has the potential to alter the human microbiota by increasing exposure to nature and environmental microbes. The hypotheses were that the use of rural second homes is associated with differences in the gut microbiota and that the microbiota related to health benefits are more diverse or common among the rural-second-home users. Based on 16S rRNA Illumina MiSeq sequencing of stool samples from 10 urban elderly having access and 15 lacking access to a rural second home, the first hypothesis was supported: the use of rural second homes was found to be associated with lower gut microbiota diversity and RIG-I-like receptor signaling pathway levels. The second hypothesis was not supported: health-related microbiota were not more diverse or common among the second-home users. The current study encourages further research on the possible health outcomes or causes of the observed microbiological differences. Activities and diet during second-home visits, standard of equipment, surrounding environment, and length of the visits are all postulated to play a role in determining the effects of rural-second-home tourism on the gut microbiota.


Asunto(s)
Microbiota , Anciano , Europa (Continente) , Finlandia , Humanos , América del Norte , Proyectos Piloto , ARN Ribosómico 16S/genética , Federación de Rusia
5.
Chemosphere ; 265: 128965, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33248729

RESUMEN

There is evidence that polycyclic aromatic hydrocarbons (PAHs) and human gut microbiota are associated with the modulation of endocrine signaling pathways. Independently, studies have found associations between air pollution, land cover and commensal microbiota. We are the first to estimate the interaction between land cover categories associated with air pollution or purification, PAH levels and endocrine signaling predicted from gut metagenome among urban and rural populations. The study participants were elderly people (65-79 years); 30 lived in rural and 32 in urban areas. Semi-Permeable Membrane devices were utilized to measure air PAH concentrations as they simulate the process of bioconcentration in the fatty tissues. Land cover categories were estimated using CORINE database and geographic information system. Functional orthologues for peroxisome proliferator-activated receptor (PPAR) pathway in endocrine system were analyzed from gut bacterial metagenome with Kyoto Encyclopaedia of Genes and Genomes. High coverage of broad-leaved and mixed forests around the homes were associated with decreased PAH levels in ambient air, while gut functional orthologues for PPAR pathway increased along with these forest types. The difference between urban and rural PAH concentrations was not notable. However, some rural measurements were higher than the urban average, which was due to the use of heavy equipment on active farms. The provision of air purification by forests might be an important determining factor in the context of endocrine disruption potential of PAHs. Particularly broad-leaved forests around homes may reduce PAH levels in ambient air and balance pollution-induced disturbances within commensal gut microbiota.


Asunto(s)
Contaminantes Atmosféricos , Microbioma Gastrointestinal , Hidrocarburos Policíclicos Aromáticos , Anciano , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Gases/análisis , Microbioma Gastrointestinal/genética , Humanos , Metagenoma , Hidrocarburos Policíclicos Aromáticos/análisis
6.
Sci Adv ; 6(42)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33055153

RESUMEN

As the incidence of immune-mediated diseases has increased rapidly in developed societies, there is an unmet need for novel prophylactic practices to fight against these maladies. This study is the first human intervention trial in which urban environmental biodiversity was manipulated to examine its effects on the commensal microbiome and immunoregulation in children. We analyzed changes in the skin and gut microbiota and blood immune markers of children during a 28-day biodiversity intervention. Children in standard urban and nature-oriented daycare centers were analyzed for comparison. The intervention diversified both the environmental and skin Gammaproteobacterial communities, which, in turn, were associated with increases in plasma TGF-ß1 levels and the proportion of regulatory T cells. The plasma IL-10:IL-17A ratio increased among intervention children during the trial. Our findings suggest that biodiversity intervention enhances immunoregulatory pathways and provide an incentive for future prophylactic approaches to reduce the risk of immune-mediated diseases in urban societies.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Biodiversidad , Niño , Guarderías Infantiles , Humanos , Piel
7.
Sci Total Environ ; 713: 136707, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32019041

RESUMEN

Gut microbes play an essential role in the development and functioning of the human immune system. A disturbed gut microbiota composition is often associated with a number of health disorders including immune-mediated diseases. Differences in host characteristics such as ethnicity, living habit and diet have been used to explain differences in the gut microbiota composition in inter-continental comparison studies. As our previous studies imply that daily skin contact with organic gardening materials modify gut microflora, here we investigated the association between living environment and gut microbiota in a homogenous western population along an urban-rural gradient. We obtained stool samples from 48 native elderly Finns in province Häme in August and November 2015 and identified the bacterial phylotypes using 16S rRNA Illumina MiSeq sequencing. We assumed that yard vegetation and land cover classes surrounding homes explain the stool bacterial community in generalized linear mixed models. Diverse yard vegetation was associated with a reduced abundance of Clostridium sensu stricto and an increased abundance of Faecalibacterium and Prevotellaceae. The abundance of Bacteroides was positively and strongly associated with the built environment. Exclusion of animal owners did not alter the main associations. These results suggest that diverse vegetation around homes is associated with health-related changes in gut microbiota composition. Manipulation of the garden diversity, possibly jointly with urban planning, is a promising candidate for future intervention studies that aim to maintain gut homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Animales , Bacterias , Bacteroides , Heces , Humanos , ARN Ribosómico 16S
8.
Oecologia ; 191(4): 919-929, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31624960

RESUMEN

Recently, community ecology has emphasized the multi-facetted aspects of biological diversity by linking species traits and the environment. Here, we explored environmental correlates of taxonomically-based and traits-based compositional distances using a comprehensive data set of diatom and macroinvertebrate communities. We also explored the responses of different beta diversity components (i.e., overall beta diversity, turnover, and nestedness) of beta diversity facets (i.e., taxonomically and traits-based beta diversity) to environmental distances. Partial Mantel tests were used to test the relationships between beta diversity and environmental distance (while controlling for spatial distances). Taxonomically-based beta diversity varied much more than traits-based beta diversity, indicating strong functional convergence. We found that taxonomically-based beta diversity was largely driven by the turnover component. However, the nestedness component contributed more to overall traits-based beta diversity than the turnover component. Taxonomically-based beta diversity was significantly correlated with environmental distances for both diatoms and macroinvertebrates. Thus, we found support for the role of environmental filtering as a driver of community dissimilarities of rather different biological groups. However, the strength of these relationships between beta diversity and environmental distances varied depending on the biological group, facet, component, and the way which the environmental variables were selected to calculate the explanatory (distance) matrix. Our results indicated that both taxonomically and traits-based approaches are still needed to better understand patterns and mechanisms affecting the organization of biological communities in streams. This is because different facets of biological communities may be driven by different mechanisms.


Asunto(s)
Diatomeas , Ríos , Biodiversidad , Ecología
9.
Environ Int ; 132: 105069, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31400602

RESUMEN

An agricultural environment and exposure to diverse environmental microbiota has been suggested to confer protection against immune-mediated disorders. As an agricultural environment may have a protective role, it is crucial to determine whether the limiting factors in the transfer of environmental microbiota indoors are the same in the agricultural and urban environments. We explored how sampling month, garden diversity and animal ownership affected the indoor-transfer of environmental microbial community. We collected litter from standardized doormats used for 2 weeks in June and August 2015 and February 2016 and identified bacterial phylotypes using 16S rRNA Illumina MiSeq sequencing. In February, the diversity and richness of the whole bacterial community and the relative abundance of environment-associated taxa were reduced, whereas human-associated taxa and genera containing opportunistic pathogens were enriched in the doormats. In summer, the relative abundances of several taxa associated previously with beneficial health effects were higher, particularly in agricultural areas. Surprisingly, the importance of vegetation on doormat microbiota was more observable in February, which may have resulted from snow cover that prevented contact with microbes in soil. Animal ownership increased the prevalence of genera Bacteroides and Acinetobacter in rural doormats. These findings underline the roles of season, living environment and lifestyle in the temporal variations in the environmental microbial community carried indoors. As reduced contact with diverse microbiota is a potential reason for immune system dysfunction, the results may have important implications in the etiology of immune-mediated, non-communicable diseases.


Asunto(s)
Bacterias/aislamiento & purificación , Vivienda/estadística & datos numéricos , Microbiota , Microbiología del Suelo , Anciano , Agricultura , Animales , Bacterias/genética , Gatos , Bovinos , Ciudades , Perros , Jardines , Humanos , Plantas , ARN Ribosómico 16S/genética , Estaciones del Año , Suelo
10.
Front Microbiol ; 10: 536, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967847

RESUMEN

Human activities typically lead to simplified urban diversity, which in turn reduces microbial exposure and increases the risk to urban dwellers from non-communicable diseases. To overcome this, we developed a microbial inoculant from forest and agricultural materials that resembles microbiota in organic soils. Three different sand materials (sieved, safety, and sandbox) commonly used in playgrounds and other public spaces were enriched with 5% of the inoculant. Skin microbiota on fingers (identified from bacterial 16S rDNA determined using Illumina MiSeq sequencing) was compared after touching non-enriched and microbial inoculant-enriched sands. Exposure to the non-enriched materials changed the skin bacterial community composition in distinct ways. When the inoculant was added to the materials, the overall shift in community composition was larger and the differences between different sand materials almost disappeared. Inoculant-enriched sand materials increased bacterial diversity and richness but did not affect evenness at the OTU level on skin. The Firmicutes/Bacteroidetes ratio was higher after touching inoculant-enriched compared to non-enriched sand materials. The relative abundance of opportunistic pathogens on skin was 40-50% before touching sand materials, but dropped to 14 and 4% after touching standard and inoculant-enriched sand materials, respectively. When individual genera were analyzed, Pseudomonas sp. and Sphingomonas sp. were more abundant after touching standard, non-enriched sand materials, while only the relative abundance of Chryseobacterium sp. increased after touching the inoculant-enriched materials. As Chryseobacterium is harmless for healthy persons, and as standard landscaping materials and normal skin contain genera that include severe pathogens, the inoculant-enriched materials can be considered safe. Microbial inoculants could be specifically created to increase the proportion of non-pathogenic bacterial taxa and minimize the transfer of pathogenic taxa. We recommend further study into the usability of inoculant-enriched materials and their effects on the bacterial community composition of human skin and on the immune response.

11.
Microbiologyopen ; 8(3): e00645, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29808965

RESUMEN

Immune-mediated diseases have increased during the last decades in urban environments. The hygiene hypothesis suggests that increased hygiene level and reduced contacts with natural biodiversity are related to the increase in immune-mediated diseases. We tested whether short-time contact with microbiologically diverse nature-based materials immediately change bacterial diversity on human skin. We tested direct skin contact, as two volunteers rubbed their hands with sixteen soil and plant based materials, and an exposure via fabric packets filled with moss material. Skin swabs were taken before and after both exposures. Next-generation sequencing showed that exposures increased, at least temporarily, the total diversity of skin microbiota and the diversity of Acidobacteria, Actinobacteria, Bacteroidetes, Proteobacteria and Alpha-, Beta- and Gammaproteobacteria suggesting that contact with nature-based materials modify skin microbiome and increase skin microbial diversity. Until now, approaches to cure or prevent immune system disorders using microbe-based treatments have been limited to use of a few microbial species. We propose that nature-based materials with high natural diversity, such as the materials tested here, might be more effective in modifying human skin microbiome, and eventually, in reducing immune system disorders. Future studies should investigate how long-term changes in skin microbiota are achieved and if the exposure induces beneficial changes in the immune system markers.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Exposición a Riesgos Ambientales , Microbiota , Piel/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenoma , Plantas , Suelo
12.
Future Microbiol ; 13: 737-744, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771153

RESUMEN

AIM: Current attempts to modulate the human microbiota and immune responses are based on probiotics or human-derived bacterial transplants. We investigated microbial modulation by soil and plant-based material. MATERIALS & METHODS: We performed a pilot study in which healthy adults were exposed to the varied microbial community of a soil- and plant-based material. RESULTS: The method was safe and feasible; exposure was associated with an increase in gut microbial diversity. CONCLUSION: If these findings are reproduced in larger studies nature-derived microbial exposure strategies could be further developed for testing their efficacy in the treatment and prevention of immune-mediated diseases.


Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Inmunidad , Plantas/microbiología , Microbiología del Suelo , Adulto , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Heces/microbiología , Femenino , Tracto Gastrointestinal/inmunología , Humanos , Inmunomodulación , Masculino , Persona de Mediana Edad , Proyectos Piloto , Piel/inmunología , Piel/microbiología , Suelo/química
13.
PeerJ ; 6: e4508, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29576975

RESUMEN

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) accumulate in urban soils, and PAH contamination can change soil microbial community composition. Environmental microbiota is associated with human commensal microbiota, immune system and health. Therefore, studies investigating the degradation of PAHs, and the consequences of soil pollution on microbial communities in urban landscaping materials, are crucial. METHODS: Four landscaping materials (organic matter 1, 2, 13 and 56%) were contaminated with PAHs commonly found at urban sites (phenanthrene, fluoranthene, pyrene, chrysene and benzo(b)fluoranthene) in PAH concentrations that reflect urban soils in Finland (2.4 µg g -1 soil dry weight). PAHs were analyzed initially and after 2, 4, 8 and 12 weeks by gas chromatography-mass spectrometry. Half-lives of PAHs were determined based on 12-weeks degradation. Bacterial communities were analyzed at 1 and 12 weeks after contamination using Illumina MiSeq 16S rRNA gene metabarcoding. RESULTS: Half-lives ranged from 1.5 to 4.4 weeks for PAHs with relatively low molecular weights (phenanthrene, fluoranthene and pyrene) in landscaping materials containing 1-2% organic matter. In contrast, in materials containing 13% and 56% organic matter, the half-lives ranged from 2.5 to 52 weeks. Shorter half-lives of phenanthrene and fluoranthene were thus associated with low organic matter content. The half-life of pyrene was inversely related to the relative abundance of Beta-, Delta- and Gammaproteobacteria, and diversity of Bacteroidetes and Betaprotebacteria. Compounds with higher molecular weights followed compound-specific patterns. Benzo(b)fluoranthene was resistant to degradation and half-life of chrysene was shorter when the relative abundance of Betaproteobacteria was high. Temporal microbiota changes involved increase in the relative abundance of Deltaproteobacteria and decrease in genera Flavobacterium and Rhodanobacter. Exposure to PAHs seems to adjust microbial community composition, particularly within class Beta- and Deltaproteobacteria. CONCLUSIONS: In this study, PAH degradation depended on the organic matter content and bacterial community composition of landscaping materials. Contamination seems to alter bacterial community composition in landscaping materials depending on material type. This alteration includes changes in bacterial phyla associated with human health and immune system. This may open new possibilities for managing urban environments by careful selection of landscaping materials, to benefit health and wellbeing.

14.
Front Microbiol ; 9: 84, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467728

RESUMEN

Expanding urbanization is a major factor behind rapidly declining biodiversity. It has been proposed that in urbanized societies, the rarity of contact with diverse environmental microbiota negatively impacts immune function and ultimately increases the risk for allergies and other immune-mediated disorders. Surprisingly, the basic assumption that urbanization reduces exposure to environmental microbiota and its transfer indoors has rarely been examined. We investigated if the land use type around Finnish homes affects the diversity, richness, and abundance of bacterial communities indoors. Debris deposited on standardized doormats was collected in 30 rural and 26 urban households in and near the city of Lahti, Finland, in August 2015. Debris was weighed, bacterial community composition determined by high throughput sequencing of bacterial 16S ribosomal RNA (rRNA) gene on the Illumina MiSeq platform, and the percentage of four different land use types (i.e., built area, forest, transitional, and open area) within 200 m and 2000 m radiuses from each household was characterized. The quantity of doormat debris was inversely correlated with coverage of built area. The diversity of total bacterial, Proteobacterial, Actinobacterial, Bacteroidetes, and Firmicutes communities decreased as the percentage of built area increased. Their richness followed the same pattern except for Firmicutes for which no association was observed. The relative abundance of Proteobacteria and particularly Gammaproteobacteria increased, whereas that of Actinobacteria decreased with increasing built area. Neither Phylum Firmicutes nor Bacteroidetes varied with coverage of built area. Additionally, the relative abundance of potentially pathogenic bacterial families and genera increased as the percentage of built area increased. Interestingly, having domestic animals (including pets) only altered the association between the richness of Gammaproteobacteria and diversity of Firmicutes with the built area coverage suggesting that animal ownership minimally affects transfer of environmental microbiota indoors from the living environment. These results support the hypothesis that people living in densely built areas are less exposed to diverse environmental microbiota than people living in more sparsely built areas.

15.
Oecologia ; 186(1): 205-216, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29090405

RESUMEN

The regional occupancy and local abundance of species are thought to be strongly correlated to their body size, niche breadth and niche position. The strength of the relationships among these variables can also differ between different organismal groups. Here, we analyzed data on stream diatoms and insects from a high-latitude drainage basin to investigate these relationships. To generate measures of niche position and niche breadth for each species, we used sets of local environmental and catchment variables separately, applying the outlying mean index analysis. Beta regression and negative binomial generalized linear models were run to predict regional occupancy and mean local abundance, respectively. We found a positive occupancy-abundance relationship in both diatoms and insects, and that niche-based variables were the main predictors of variation in regional occupancy and local abundance. This finding was mainly due to local environmental niche position, whereas the effects of niche breadth on regional occupancy and local abundance were less important. We also found a relationship between body size and local abundance or regional occupancy of diatoms. Our results thus add to current macroecological research by emphasizing the strong importance of niche position rather than niche breadth and body size for regional occupancy and local abundance in rarely studied organisms (e.g., diatoms and insects) and ecosystems (i.e., wilderness streams).


Asunto(s)
Diatomeas , Ríos , Animales , Tamaño Corporal , Ecosistema , Insectos
16.
PLoS One ; 12(11): e0187852, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29145477

RESUMEN

Long-term exposure to polyaromatic hydrocarbons (PAHs) has been connected to chronic human health disorders. It is also well-known that i) PAH contamination alters soil bacterial communities, ii) human microbiome is associated with environmental microbiome, and iii) alteration in the abundance of members in several bacterial phyla is associated with adverse or beneficial human health effects. We hypothesized that soil pollution by PAHs altered soil bacterial communities that had known associations with human health. The rationale behind our study was to increase understanding and potentially facilitate reconsidering factors that lead to health disorders in areas characterized by PAH contamination. Large containers filled with either spruce forest soil, pine forest soil, peat, or glacial sand were left to incubate or contaminated with creosote. Biological degradation of PAHs was monitored using GC-MS, and the bacterial community composition was analyzed using 454 pyrosequencing. Proteobacteria had higher and Actinobacteria and Bacteroidetes had lower relative abundance in creosote contaminated soils than in non-contaminated soils. Earlier studies have demonstrated that an increase in the abundance of Proteobacteria and decreased abundance of the phyla Actinobacteria and Bacteroidetes are particularly associated with adverse health outcomes and immunological disorders. Therefore, we propose that pollution-induced shifts in natural soil bacterial community, like in PAH-polluted areas, can contribute to the prevalence of chronic diseases. We encourage studies that simultaneously address the classic "adverse toxin effect" paradigm and our novel "altered environmental microbiome" hypothesis.


Asunto(s)
Bacterias/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Finlandia , Cromatografía de Gases y Espectrometría de Masas
17.
Oecologia ; 183(1): 151-160, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27743166

RESUMEN

It was recently suggested that beta diversity can be partitioned into contributions of single sites to overall beta diversity (LCBD) or into contributions of individual species to overall beta diversity (SCBD). We explored the relationships of LCBD and SCBD to site and species characteristics, respectively, in stream insect assemblages. We found that LCBD was mostly explained by variation in species richness, with a negative relationship being detected. SCBD was strongly related to various species characteristics, such as occupancy, abundance, niche position and niche breadth, but was only weakly related to biological traits of species. In particular, occupancy and its quadratic terms showed a very strong unimodal relationship with SCBD, suggesting that intermediate species in terms of site occupancy contribute most to beta diversity. Our findings of unravelling the contributions of sites or species to overall beta diversity are of high importance to community ecology, conservation and bioassessment using stream insect assemblages, and may bear some overall generalities to be found in other organism groups.


Asunto(s)
Ecosistema , Ríos , Animales , Biodiversidad , Ecología , Insectos
18.
J Anim Ecol ; 84(5): 1342-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25981411

RESUMEN

1. Metacommunity research relies largely on proxies for inferring the effect of dispersal on local community structure. Overland and watercourse distances have been typically used as such proxies. A good proxy for dispersal should, however, take into account more complex landscape features that can affect an organism's movement and dispersal. The cost distance approach does just that, allowing determining the path of least resistance across a landscape. 2. Here, we examined the distance decay of assemblage similarity within a subarctic stream insect metacommunity. We tested whether overland, watercourse and cumulative cost distances performed differently as correlates of dissimilarity in assemblage composition between sites. We also investigated the effect of body size and dispersal mode on metacommunity organization. 3. We found that dissimilarities in assemblage composition correlated more strongly with environmental than physical distances between sites. Overland and watercourse distances showed similar correlations to assemblage dissimilarity between sites, being sometimes significantly correlated with biological variation of entire insect communities. In metacommunities deconstructed by body size or dispersal mode, contrary to our expectation, passive dispersers showed a slightly stronger correlation than active dispersers to environmental differences between sites, although passive dispersers also showed a stronger correlation than active dispersers to physical distances between sites. The strength of correlation between environmental distance and biological dissimilarity also varied slightly among the body size classes. 4. After controlling for environmental differences between sites, cumulative cost distances were slightly better correlates of biological dissimilarities than overland or watercourse distances between sites. However, quantitative differences in correlation coefficients were small between different physical distances. 5. Although environmental differences typically override physical distances as determinants of the composition of stream insect assemblages, correlations between environmental distances and biological dissimilarities are typically rather weak. This undetermined variation may be attributable to dispersal processes, which may be captured using better proxies for the process. We suggest that further modifying the measurement of cost distances may be a fruitful avenue, especially if complemented by more direct natural history information on insect dispersal behaviour and distances travelled by them.


Asunto(s)
Distribución Animal , Biodiversidad , Insectos/fisiología , Ríos , Animales , Metabolismo Energético , Finlandia , Geografía
19.
Ecol Evol ; 5(6): 1235-48, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25859329

RESUMEN

The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.

20.
Ecol Evol ; 4(10): 1931-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24963387

RESUMEN

The regional occupancy and local abundance of species are affected by various species traits, but their relative effects are poorly understood. We studied the relationships between species traits and occupancy (i.e., proportion of sites occupied) or abundance (i.e., mean local abundance at occupied sites) of stream invertebrates using small-grained data (i.e., local stream sites) across a large spatial extent (i.e., three drainage basins). We found a significant, yet rather weak, linear relationship between occupancy and abundance. However, occupancy was strongly related to niche position (NP), but it showed a weaker relationship with niche breadth (NB). Abundance was at best weakly related to these explanatory niche-based variables. Biological traits, including feeding modes, habit traits, dispersal modes and body size classes, were generally less important in accounting for variation in occupancy and abundance. Our findings showed that the regional occupancy of stream invertebrate species is mostly related to niche characteristics, in particular, NP. However, the effects of NB on occupancy were affected by the measure itself. We conclude that niche characteristics determine the regional occupancy of species at relatively large spatial extents, suggesting that species distributions are determined by environmental variation among sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...